Spoken dialogue management as planning and acting under uncertainty
نویسندگان
چکیده
Some stochastic models like Markov decision process (MDP) are used to model the dialogue manager. MDP-based system degrades fast when uncertainty about user’s intention increases. We propose a novel dialogue model based on the partially observable Markov decision process (POMDP). We use hidden system states and user intentions as the state set, parser results and low-level information as the observation set, domain actions and dialogue repair actions as the action set. Here the low-level information is extracted from different input modals using Bayesian networks. Because of the limitation of exact algorithms, we focus on heuristic methods and their applicability in dialogue management.
منابع مشابه
Planning and Acting under Uncertainty: A New Model for Spoken Dialogue System
Uncertainty plays a central role in spoken dialogue systems. Some stochastic models like the Markov decision process (MDP) are used to model the dialogue manager. But the partially observable system state and user intentions hinder the natural representation of the dialogue state. A MDP-based system degrades quickly when uncertainty about a user's intention increases. We propose a novel dialogu...
متن کاملAdaptive Information Presentation for Spoken Dialogue Systems: Evaluation with real users
We present evaluation results with human subjects for a novel data-driven approach to Natural Language Generation in spoken dialogue systems. We evaluate a trained Information Presentation (IP) strategy in a deployed tourist-information spoken dialogue system. The IP problem is formulated as statistical decision making under uncertainty using Reinforcement Learning, where both content planning ...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOptimizing Dialogue Strategy Learning Using Learning Automata
Modeling the behavior of the dialogue management in the design of a spoken dialogue system using statistical methodologies is currently a growing research area. This paper presents a work on developing an adaptive learning approach to optimize dialogue strategy. At the core of our system is a method formalizing dialogue management as a sequential decision making under uncertainty whose underlyi...
متن کامل